P2X7 receptor activates multiple selective dye-permeation pathways in RAW 264.7 and human embryonic kidney 293 cells.

نویسندگان

  • Serife Cankurtaran-Sayar
  • Kemal Sayar
  • Mehmet Ugur
چکیده

P2X7 receptor has gained an increasing importance as a drug target. One important response to P2X7 receptor stimulation is the uptake of large molecular weight tracers into cells. However, mechanism for this response is not understood clearly, but it is generally believed that a nonselective large pore protein forms this P2X7 receptor-activated permeability pathway. We examined human embryonic kidney (HEK) 293 cells transfected with rat P2X7 receptors (HEK-rP2X7) and a macrophage derived cell line, RAW 264.7, that expresses an endogenous P2X7 receptor. We used confocal microscopy to investigate uptake of different types of dyes into these cells after ATP application. Stimulation of P2X7 receptors in HEK-rP2X7 cells activated two different dye uptake pathways. The first was permeable to the cationic fluorescent dyes YO-PRO-1 and TO-TO-1 but not to the anionic dyes lucifer yellow and calcein and did not require intracellular Ca2+ concentration ([Ca2+](i)) increase to be activated. The second pathway permeated only lucifer yellow and was completely dependent on [Ca2+](i) for activation. In RAW 264.7 cells, P2X7 receptor stimulation activated uptake of ethidium, YO-PRO-1, TO-TO-1, lucifer yellow, and calcein. Again, two different permeation pathways were discerned in RAW 264.7 cells: one permeated only ethidium and the other one, only lucifer yellow. We did observed no clear [Ca2+](i) dependence for these permeation pathways. Our results demonstrate that instead of a single nonselective pore, P2X7 receptor seems to activate at least two permeation pathways, one for cationic and one for anionic dyes with different activation properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Potentiation of native and recombinant P2X7-mediated calcium signaling by arachidonic acid in cultured cortical astrocytes and human embryonic kidney 293 cells.

In the brain, arachidonic acid (AA) plays a critical role in the modulation of a broad spectrum of biological responses, including those underlying neuroinflammation. By using microfluorometry, we investigated the action of extracellular AA in the modulation of the purinoceptor P2X7-mediated elevation of [Ca(2+)](i) in cultured neocortical type-1 astrocytes and P2X7-, P2X2-transfected human emb...

متن کامل

Selective knock-down of P2X7 ATP receptor function by dominant-negative subunits.

Among the family of P2X ATP-gated cation channels, the P2X7 receptor is a homomeric subtype highly expressed in immune cells of the monocyte-macrophage lineage. We report here that the WC167-168AA mutation in the ectodomain of P2X7 produced nonfunctional subunits with strong dominant-negative effect on wild-type P2X7 receptors (77% inhibition with cotransfection of wild-type and mutant DNA at a...

متن کامل

P2X7 receptor channels allow direct permeation of nanometer-sized dyes.

P2X receptors are widely distributed in the nervous system, and P2X7 receptors have roles in neuropathic pain and in the release of cytokines from microglia. They are trimeric membrane proteins, which open an integral ion channel when ligated by extracellular ATP. This channel is preferentially permeable to small cations (sodium, potassium, calcium) but also allows permeation of larger cations ...

متن کامل

Isoquinolines as antagonists of the P2X7 nucleotide receptor: high selectivity for the human versus rat receptor homologues.

1-[N, O-Bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazine (KN-62) and N-[1-[N-methyl-p-(5 isoquinolinesulfonyl)benzyl]-2-(4 phenylpiperazine)ethyl]-5-isoquinolinesulfonamide (KN-04) potently inhibit the human lymphocyte P2Z receptor, an ATP-gated cation channel [Br J Pharmacol 120:1483-1490 (1997)]. Although the molecular identity of the lymphocyte P2Z receptor has not been est...

متن کامل

Probenecid Blocks Human P2X7 Receptor-Induced Dye Uptake via a Pannexin-1 Independent Mechanism

P2X7 is a ligand-gated ion channel which is activated by ATP and displays secondary permeability characteristics. The mechanism of development of the secondary permeability pathway is currently unclear, although a role for the hemichannel protein pannexin-1 has been suggested. In this study we investigated the role of pannexin-1 in P2X7-induced dye uptake and ATP-induced IL-1β secretion from hu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 76 6  شماره 

صفحات  -

تاریخ انتشار 2009